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The dark matter problem



An 80-year old puzzle

In 1933:

Fritz Zwicky analyzed velocity
dispersion in Coma Cluster

g A AR o o Individual galaxies move too fast
Coma Galaxy Cluster -, Sles D for a bound system...
(SDsS) ' R e R T

Posited existence of unseen matter in the cluster
and named it “dark matter”



The Modern View of Dark Matter

What we know:

_ L It's stable, cold,

~X-rays émltted bv» . .. SN gravitationally interacting,
StBgled e S B non-baryonic, interacts
little with itself (or not at
all), composes ~80% of
matter in the Universe...

But:

If dark matter is

“* " Mass mapped W|th" 4 of
_ 'grawtatlonal Ien§|ng’ composed O

iy , elementary particles,
Bl none in the Standard
Model fits !

Fermilab W&C, March 2014 4



WIMPs 101

| RS

,e,, o THE: A
MIRACL
. OCCLIRSg,-" t

"7 TUNK Nou SHOULWD &6 MORE
EXPLIUT HERE IN STEP TWO, "



o, (Pb)

The Weakly Interacting Massive

Particle

«| Asampling of
‘r available dark

| matter candidates

neutrinos

axion

" [fuzzy CDM

i

i

i
Q-ball
K

WIMPs
neutralino
KK photon

branon
Ltp

4 axino
SuperWIMPs :

l gravitino
viton

, | Black Hole Remnant ,

mass (GeV)
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The WIMP “Miracle”

Particles with mass and
couplings at the weak scale
yield cross sections that
correspond to ~correct relic

density of CDM

“F universe

T T

annihilation

Increasing <o,v>

| s L

oed yoned v vvind o svied 3l

Freeze-out
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How to detect WIMPs

FERMI-GLAST ‘

>

Hove.

man-made COLLIDER
Relic production
annihilation in
the cosmos Relic WIMP-
INDIRECT nucleon elastic
DETECTION scattering
. DIRECT
§ DETECTION
S
7

Fermilab W&C, March 2014



Consider the relic WIMP distribution

Observed energy spectrum & rate depend on WIMP distribution in dark

matter halo
e Dark matter is distributed in a large Schematic of
extended, spherical halo around the Milky . DM Halo
Way 3 (1/2 cutaway)

* For comparison of direct detection
experiments, assume an isothermal
Maxwell-Boltzmann velocity distribution,
with width = 220 km/s and v~ 544 km/s

e Ve ~ 245 km/s - WIMP velocity relative to
Earth

 Local density of WIMPs = 0.3 GeV/cm?

If WIMPs are 100 GeV/c? particles, then ~10
million pass through your hand each second!

Fermilab W&C, March 2014 8




Scattering rate dissected

particle nuclear local properties
theory structure of DM halo
Interaction  dR T, FZ(ER) po T(ER)
Rate KT 5
[events/keV/kg/day] dE R my my. Vo \/7_1-

T

Recoil energy of nucleus

Fermilab W&C, March 2014



Scattering rate dissected

particle nuclear local properties
theory structure of DM halo

nteraction  dR o0, F?*(ER) po T(ER)
el dEr  m, m?2 Vo /T

levents/keV/kg/day]
4m$ o For spin-independent scattering, and small
Op = - A® — momentum transfer, scattering terms add
f coherently, proportional to A’ (A= atomic mass)

WIMP-nucleon coupling constant;
assumed same for proton and
neutron in vanilla scattering

Fermilab W&C, March 2014 10



Scattering rate dissected

particle nuclear local properties
theory structure of DM halo
Interaction  dR T, FZ(ER) po T(ER)
Rate KT 5
[events/keV/kg/day] dE R my my. Vo \/7_1-
m, = MyMN  Reduced mass of

N M, + My WIMP-nucleon system

Form factor parameterizes o 2
~exp(—Ermy R:/3
“coherence” vs E, ( R) p( fTON O/ )

Fermilab W&C, March 2014 11



Scattering rate dissected

particle nuclear local properties
theory structure of DM halo
Interaction  dR 0o F*(ER) po T(ER)
Rate — 2
[events/keV/kg/day] dE R my my. Vo \/7_T

Integral over local WIMP velocity * f(vp,VE, Vesc)
3 y Vesc

distribution (Maxwell-boltzmann w/ T(E R dvp
assumed parameters on earlier slide) Umin YD
V_. is the minimum WIMP
A 2 min
Umin \/ER mnN / (Zmr) velocity needed to produce

recoil E,

Fermilab W&C, March 2014 12



The expected signal from a heavy WIMP

1077

Rate [counts day’ kg™’ keV!)
=
o
-

Expected recoil spectrum is roughly exponential with << 1 event/kg/day

expected, A enhancement helps a lot with heavy WIMPs

100 GeV/c? WIMP-induced recoil spectrum

SN Si (A=28)
BTN Ge (A=72)
= SN Xe (A=131)
— (O
!
[ S N V... = 544 km/s
| 'E I o= 10-45 Cm2
= ol
- S
- o
L §<l:
. P
— Q |
- Qf
L E i
[ R
|LllJ= 1 | 1 | I | - | | 1 1 I\I 1 | I 1 | I 1 I 1 | I 1
0 20 40 60 80 100 120 140 160

Nuclear Recoil Energy [keV]

Fermilab W&C, March 2014
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Rate [counts day™’ kg™! kev!]

The expected signal from a light WIMP

Recoil spectrum drops off much more steeply with energy because
kinematics matter much more for light WIMPs !

[
oI

1078

10 GeV/c? WIMP-induced recoil spectrum

Si (A=28)
Ge (A=72)
Xe (A=131)

V

osc = 944 km/s
o=10% cm?

I IIIIIIII I lIIIIIIl T

[ IIIIIII

1 1 1 1 1 1 1 1 1 I 1 1 1 1 I 1 1 1 1 [ 1 1 1 1 I
5 10 15 20 25 30

Nuclear Recoil Energy [keV]

O Illlllll

A WIMP must have a minimum
velocity to produce a recoil of a
specific energy

= Experiments with lighter targets and lower thresholds have the advantage
when looking for WIMPs with mass < 10 GeV/c?

Fermilab W&C, March 2014
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Backgrounds: as big a problem as ever

Expected WIMP scattering rate is ~107 times lower
than radioactivity of common materials

ELECTRON RECOILS
Gamma: MOST PREVALENT BACKGROUND

; Photon and

: « " ' .|| electrons scatter
Beta: most common “surface events” > § I/ " from the atormic

electrons

NUCLEAR RECOILS

WIMPs and neutrons
scatter from the /

atomic nucleus

Neutron: rare but single-scatters NOT
distinguishable from a WIMP signal

Alphas: not a background for CDMS

Pb recoils (from alpha decay): another type of
surface event background

Fermilab W&C, March 2014 15



Have we seen evidence
for WIMPs?

16



WIMP-nucleon cross section [cm?]

Spin-Inde

pendent Landscap
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O
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WIMP-nucleon cross section [cm?]

Spin-Indep
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Zoom of Low-Mass Region

[qd] uonoas sso1d uospPNU—JINIAM

T N T h T
(e} (e} (e} (e} ()
— — — — —
<
>
S \
D
f( \ dwu
AN ~ _
\ palllig ' /
\\ S V1Y /
V &’ ’
) / %
| \ Y Vi
| | 0 : I
\ iy
| L~ ' 2 |y 2
Q 1 \1 \“‘/ 2
\ \ \\J \\v“/ku
/ \__\ \\ \\ C
i -
o0 \\\) 7
(g e} / k
v
W(m 37 \\ e -
=l
ADn ol \\ e m'@/
\ \\ - uzymﬂ?oo
e '\
kh..u\\ =TT —
q A 2)
- o /\ i \rrv, @0
(O ‘\\c /
AP W 4N o | &
BT BT S I
j—r -.\,‘ 04 = @)
‘/m\ \/ m.%@ m =
\OO nw =
yd N
\\\
L
o)) — [\l o
S i i i i
(e} (e} (e} (e} (e}
— — — — —

[, Wo] uondas 5010 UoINU—JANIM

40 50

15 20 30

5 6 7 8910

4

WIMP Mass [GeV/c?]

19

Fermilab W&C, March 2014



Hint from CDMS Il Silicon Search

PRL 111 (2013) 251301 (]
K — : : - : : : : 0
l.Er ] T

PIal

Recoil Energy (keV)

Likelihood analysis incorporating energy of events yields ~30o significance

A Uoleziuoj

20



¥ CoGeNT e
| LOLE § e —
gso_g _ 06?-’. g
In 2010, CoGeNT using PPC Ge to push §m ik
ionization thresholds down to <0.5 keV; § © oLl ST l
reported an excess of low-energy events with S J8 55
spectrum consistent with a ~10 GeV/c> WIMP £ 1[{ :v%jl@ |ﬂ
g 20+ 80[ T T .
In 2011, reports a modulation of events in the = [ &6} ‘5
0.5-3.0 keVee region with ~20 significance, "8t Jf
corresponding to a large fractional modulation 5 + .
=
In 2014, Analysis of 3.4 years of data shows Ew_”_ Primary -
persistent ~20 modulation in low-energy region, | analvsts =
arXiv:1401.3295; Alternative maximum likelihood =" T
analysis qualitatively supports earlier analysis, e
but with less significant excess seen at low 0%}
energies, arXiv:1401:6234. S
e -

Fermilab W&C, March 2014

88Ge K Shell (10.37

<1345 (11.10)

1

T T
0.5-2.0 keVee BULK |
(calculated L-shell EC correction)

(1
i

CoGeNT (no neutron background) *

CoGeNT (neutron bkg un-constrained)
CoGeNT 2013 PRD

CDMSLite

CDMS 11 Ge

CDMS Si 68 % C.I

CDMS Si 90 % CL.

CoGeNT 90 % C.L. (maximum likelihood)
CoGeNT 90 % C.L. (M.L. + floating sys.)

102
WIMP mass [GeV/c]
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(Ultra) Low lonization Threshold
Experiment: CDMSlite

Neganov-Luke amplification of phonon response allows operation at very
low energy thresholds

WIMP @

Electrons and holes radiate phonons
proportional to V. as they drift to the
electrodes. = Apply large V. to
amplify ionization signal

22



(Ultra) Low lonization Threshold
Experiment: CDMSlite

Neganov-Luke amplification of phonon response allows operation at very
low energy thresholds

PRL 112 (2014) 041302

........

comslite\ % v el
(2014) - S

World-leading "i‘
Electrons and holes radiate phonons Z;mte‘;‘:/ O';luore , .
proportional to V,,; as they drift to the = v exposure:.
electrodes. = Apply large V. to
amplify ionization signal

3 4

First CDMSlite run: 170 eVee (<1 keV,,) threshold with 0.6 kg Ge, 10 live days and

no background subtraction! s



_ N

U

2.6

24

2.2

log ' 0(S2b/S1 ) X,y,Z corrected
>

118 kg Xe target, operated in
dual-phase TPC; Sets world’s most
sensitive Sl limit over broad mass range

First Results from LUX

___\CDMS Il Ge

85.3 live days with

WIMP-nucleon cross section (cmz)

4

-—b
[=]

I

-t
=)

b

~N

-t
o

e

o
I
@

LUX (2013)-85 live day3

T __CRESST Favored

XENON100(2042)-225ive days
>20x more sensitivity

S
.

~

LUX +-10 Eiﬁeqed sensitivity

6

7 8 9 40 12
LV (GeV/c)

Large enough mass
can give sensitivity
to some low mass
WIMPs. But be
careful with energy
scale calibration and
velocity profiles!

S1 x,y,z corrected (phe)
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Why low mass?

Masses < 10 GeV/c? are not naturally preferred by many theoretical frameworks
motivated by the WIMP miracle. However ....

« Many models predict dark matter outside of the “vanilla” WIMP
paradigm. Fine tuning of parameters is often necessary, even if it's

undesirable
« Expanding beyond CMSSM (even SUSY) opens up a lot of

parameter space: pMSSM, NMSSM, Asymmetric, Isospin Violating,
Inelastic, (insert your favorite model here), ...

« We should not ignore the data. Several experiments are reporting
excess events. Could these be the first indications of a major
discovery? Several other experiments, done with different targets,

are in tension with a dark matter interpretation...

Even if the experiments are only seeing backgrounds, its worth gathering
enough data to definitively rule out these anomalous observations!

Fermilab W&C, March 2014 25



SuperCDMS Low-Mass
WIMP Search



16 germanium detectors
0.6 kg each
Operational since March of 2012

interleaved
Z-sensitive
lonization &

Z

>

Improved fiducialization from measurement
of z-symmetric ionization response

Phonon guard and z-symmetric phonon
response helps too!

Data for this analysis: 577 kg-days
taken from Mar 2012 — July 2013

7 iZIPs w/ lowest trigger thresh

Fermilab W&C, March 2014 27



The SuperCDMS Collaboration
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Rate [counts day-! kg-! keV-']

Optimizing for Low Mass

Recall: experiments with lighter targets and lower thresholds have the advantage
when looking for WIMPs with mass < 10 GeV/c?

7 GeV/c? WIMP-induced recoil spectrum

s
o

| €— Analysis —>} S A~
e Si (A=28)
Ge (A=72)
Xe (A=131)

Voo = 544 km/s
g =104 cm?

—

2

<

—
<
w

—
<
o

1 [ 1 1 1 I 1

—
<
(=]

Our strateqy:

2
o IlIIIIIIl IIIIl|T|'| IIIIIIlI| IIIIIIIII IIIIIIIII I AL

5 10 15 20 25

Nuclear recoil energy [keV,,]

Ge is a relatively heavy target
so go as low in threshold as
possible

=>» trigger threshold (1.6 keV,,)

Backgrounds more difficult to
reject below 10 keV,,; use full
capability of iZIPs to reject as
much background as possible

We expect background events in the signal region!! Tradeoff is greater
sensitivity to low mass WIMPs.
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Backgrounds to Eliminate

Bulk electron recoils =
Compton background and 1.3
keV activation line

lonization vs phonon
distinguishes NR
from bulk ER

Fermilab W&C, March 2014 30



Backgrounds to Eliminate

lonization vs phonon
distinguishes NR
from bulk ER

Bulk electron recoils =
Compton background and 1.3
keV activation line

Use division of energy
between inner and outer
sensors, ‘radial partition”

sidewall & surface events =
betas and x-rays from 21°Pb, 210Bj,
recoils from 2%Pb (i.e. Rn
daughters), outer radial comptons
and ejected electrons from
compton scattering

Use division of energy
between sides 1 and 2,
“z-partition”

Fermilab W&C, March 2014 31



Backgrounds to Eliminate

lonization vs phonon
distinguishes NR
from bulk ER

Bulk electron recoils =
Compton background and 1.3
keV activation line

Use division of energy
between inner and outer
sensors, ‘radial partition”

sidewall & surface events =
betas and x-rays from 21°Pb, 210Bj,
recoils from 2%Pb (i.e. Rn
daughters), outer radial comptons
and ejected electrons from
compton scattering

Use division of energy
between sides 1 and 2,
“z-partition”

Use active and passive
Shielding. Simulation
determines remaining
irreducible rate

Cosmogenic & radiogenic
neutrons

Fermilab W&C, March 2014 32



lonization Energy [keV]

Nuclear Recoll Energy Determination

lonization for nuclear recoils,

measured from 2°°Cf data: Total phonon energy =

Eiia = Euwe E

517 Detector: total luke recoil
12722 E,.i.; IS measured with phonons
| NR equivalent energy =
—— C.L. <68%
——— 68%<C.L.<95% Etotal _ ELuke NR
e E, .« nr €Stimated from mean NR
—— Measured ionization, varies with E, .,
— - Lindhard (same as CDMS Il low mass
|— BestFit ___|
| | | | I | | SearCh)
3 4 5 6 780910 20 30

Total phonon energy [keV]

Note: we sometimes approximate mean ionization with Lindhard theory because
measured values are detector-dependent. This is labeled “Lindhard nuclear recoil
energy’; difference is a few %.

Fermilab W&C, March 2014 33



Analysis Summary

Blind analysis: All singles in analysis energy range removed from study, except data
following neutron calibration due to activation (additional 97 kg-days not used for limit
calculation or cut tuning)

Fermilab W&C, March 2014 34



Analysis Summary

Blind analysis: All singles in analysis energy range removed from study, except data

following neutron calibration due to activation (additional 97 kg-days not used for limit
calculation or cut tuning)

Efficiency

—_
o

2

Data Quality:

Llndgard nuclear-;econ e8nergy£keVnr] . Reject high/abnormal noise

3

o
o2)

0.6

0.4

0.2f

- —

* Reject atypical operational periods

Tngger and Analysis Threshold:
Select periods of stable, well-defined
trigger threshold

* Analysis thresholds based on time-
varying noise baseline

Preselection:
» Single-detector scatter
 Muon veto anticoincident

+ Boosted Decision

Tree
* jonization fiducial volume
D 4 6 8 10 12 * lonization energy and phonon
Total phonon energy [keV] partitions consistent w/ NR
Efficiencies: measured with neutrons from Boosted Decision Tree
252Cf. Geant4 used to correct for multiple « “tight” phonon fiducial volume and

Scattering, yields ~25% correction

ionization yield at low energy

Fermilab W&C, March 2014 35



Boosted Decision Tree (BDT)

Discrimination lies in correlations between 4 parameters in partition and energy

=
2

Background modeled
w/ simulated data Signal modeled

based (_)n s@ebands w/ NR from 252Cf
and calibration

Input 1

o
™

“Input 2

Number of events
Number of events

-
=)
o
o
I

rescaled for 10

2 GeV/c2 WIMP ]
q>')102:_ 1
() —
5 10 -5 — -1 0 12
total phonon energy [keV] 5 lonization energy
Q [keV]
g 10=—
Z £
="
-

_.

1)
2
o
2

-0.5 0.5 1

BDT oscore

Number of events
Number of events

-
o

B wivP (10 GeVc?)
1 Sidewall ®®Pb

I sidewall 2'°Pb+21°B;i \
B Face 2'°Pb+2'%Bi oG : 08 54

e
o

0 0.2 0.4
phonon z-partition BN 1.3 keV line phonon radial partition
I Comptons
WIMP model assumes: .
Fermilab W&C, March 2014 36

o=6x10% cm?



Background model w/ pulse simulation

ionization

Phonon energy

Problem: Backgrounds
at low energy are more
difficult to separate from
signal region due to
worsening resolution

37



Background model w/ pulse simulation

ionization

Phonon energy

Problem: Backgrounds
at low energy are more
difficult to separate from
signal region due to
worsening resolution

Solution: Study directly with
a pulse simulation; using high
energy events in sidebands
and calibration data as
templates

Event w/ good signal to

Random trigger
(e.g. noise)

noise, scaled down in
amplitude

+

Simulated
low energy
event

L

weight events as a function of energy
to match low energy backgrounds

38




Background estimates

Background estimates finalized before unblinding, included known
systematic effects; Checked against open dataset and reasonable
agreement found

*Purpose of background model was tuning cuts; possible unknown
systematics preclude background subtraction for this blind analysis.
Thus, decision made to set an upper limit prior to unblinding

4 BDT cuts developed for 5, 7, 10 and 15 GeV/c? WIMPs; accept
events that pass any of the four cuts; Each cut was tuned
simultaneously on all detectors, maximizing 90% C.L. poisson
sensitivity for that mass

Background model expected: 6.1 +0181 events

Neutron background adds additional: 0.10 £ 0.02 events

Fermilab W&C, March 2014 39



Unblinding: Before BDT cut

Shown: events passing all cuts except the BDT and ionization selection

lonization energy [keV]

Lindhard nuclear-recoil energy [keVnr]
3 4 5 6 7 8 9
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Total phonon energy [keV]
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Unblinding: After BDT cut

11 candidates seen, 6.2 +1.1 -0.8 expected

Lindhard nuclear-recoil energy [keVnr]
2 3 4 5 6 7 8 9
|

%l 4 T T 1T 1 | T 1T 1 | T 1T 1 | Igl T 1 ..‘I”{z I;;L:.E}:; q. 'lo:l.]’fl T T 1 | T 1T 1

' o ...' ‘f::-\- % ?g.:..o

- SRR

o

()

CICD ate

\

S N)"'::c j\ pand

5 0 ne

c o o
Detector Lt .
® 1271 k0 Uk Outegradial - ¢
= T2Z2 L Veventse
A T522 AN :

T573 e b 1 1 [ 1 | |

8 10 12
Total phonon energy [keV]
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w/ 95% WIMP Confidence Intervals

S
(]
=,
>
o2
()
c
()
[
O
©
N
c
o
Detector
® 1271
mT2Z2
A T5Z2
T5Z3

11 candidates seen, 6.2 +1.1 -0.8 expected

Lindhard nuclear-recoil energy [keVnr]
2 3 4 5 6 7 8 9
| > .bl;t.l‘;'}:};;!"l.o;lo‘[fl T T T 1 T 1 |.| ] )
2odat= " - 95% confidence interval for
c e\ 5, 7, 10 and 15 GeV/c? WIMP
’ after passing BDT selection

WD Ceventse .

I P L L

8 10 12
Total phonon energy [keV]
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H del to dat t-unblindi
< <
(=] —e— Data Q —e— Data
e 10° = = 5 GeV BDT B wive 2102 :_7 Gev BDT . wive
[2] — —
2 — [ sidewall ®®Pb 2 — [ sidewall 2P
= — — idewal
0 I sidewall *°Pb+2"%Bi § — I sidewall*"°Pb+*"%Bi
it B Face 2°Pb+*"°Bi o | B Face 2P+
° I 1.3keV line ° I 1.3 keV line
2 10 I Comptons L 0= I Comptons
£ [S —
= > —

1
o ol
2 o 20= . 4
o o O %0 tdg, pd
1 1 1 1 _40 | | |
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Post-unblinding discussion

Events generally high in quality

except lowest energy candidate, which looks like spurious noise.

Agreement
with
predicted
background
IS good on
most
detectors

3 Range of counts with p-value >0.05
2 +10 background expectation
® observed

events
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Post-unblinding discussion
Events generally high in quality

except lowest energy candidate, which looks like spurious noise.

Agreement
with
predicted
background
IS good on
most
detectors
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detector

Exception is
T8Z3, which
has 3 highest-
energy events.

Probability for background to fluctuate up to 3 or more events is 0.0004
on T5Z3. This detector has a shorted ionization guard; at present it is
unclear whether excess events are related, additional studies are

ongoing

Fermilab W&C, March 2014
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Post-unblinding discussion

events

Note: Detectors w/
higher thresholds

(3-4 keV) have little 4
expected leakage ;...
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Spin-independent Scattering Constraints

90% C.L. optimal interval upper limit, no background subtraction, treating all
observed (eleven) events as WIMP candidates
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Fermilab W&C, March 2014

WIMP-nucleon cross section [pb]

CoGeNT strongly
disfavored in model-
independent scenario

CDMS Il (Si) disfavored
under assumption of
standard halo model and
AZ? coupling

Explores new parameter
space below 6 GeV/c?

Competitive constraint for
Ge up to 20 GeV/c?;
dedicated HT analysis yet
to come

Disagreement between
limit and sensitivity at high
WIMP mass due to events
on T5Z3.
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What about the CDMS |l Si result?

Available parameter space is being tightly constrained by this result and
others, but some select models still remain....

Julfp=—0.7
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Example above from recent paper on isospin-violating dark matter
(w/ colored mediators)
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The longer term picture
(SuperCDMS G2)
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M WIMP Searches w/ SuperCDMS
SNg.A8 SNOLAB e

MINING FOR KNOWLEDGE
CREUSER POUR TROUVER... L’EXCELLENCE

) ] SNOLAB Ladder Lab
~100 kg of mixed Ge/Si payload, GHENN %

w/ 5% detectors configured in . A . 10cmX3.8cm
CDMSlite mode ¥y .

Dilution
Refrigerator

P
b sp, s d/'ng

\l fprd s L T, . e Locate in North America’s
shimagaicaied | ” G deepest underground lab
* Bigger iZIP detectors
* Cleaner shielding, w/ active
neutron veto
 Upgraded electronics
« Room to expand to 400 kg

Water and Poly outer shielding
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Summary

First result using background rejection capability of
SuperCDMS!
arXiv: 1402.7137

7 iIZIPs analyzed down to trigger threshold (1.6 keV,,);
Exposure of 577 kg-days sets 90% C.L. upper limit to
WIMP-nucleon Sl scattering, o = 1.2x10-42cm?, at 8 GeV/c?

New phase space explored below 6 GeV/c?

CoGeNT interpretation of WIMPs strongly disfavored in model-
independent scenario; CDMS Il (Si) region disfavored under
standard halo model and A? coupling

SuperCDMS SNOLAB will have unprecedented reach in searches for low-mass
WIMPs and complementary sensitivity in searches for high-mass WIMPs
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